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Oxygen radicals are no doubt involved in the development of many pathological states. Nevertheless, the 
possibility that oxygen radical production was selected for during biological evolution in order to perform 
useful roles in relation to cellular metabolism is contemplated; previous data on this subject are briefly 
reviewed. The concept of an “oxygen radical cycle” is proposed as a useful theoretical model. 

KEY WORDS: Free radicals, superoxide dismutase, catalase, glutathione peroxidase, superoxide, 
hydrogen peroxide. 

INTRODUCTION 

There is no doubt that oxygen radicals, and more generally free radicals, are involved 
in the development of various pathological states such as ischaemia-reperfusion injury’ 
or inflammation., Their implication in other degenerative diseases including cancer,374 
arterio~clerosis,~ Alzheimers and Parkinsons disease,6 is increasingly suspected. The 
wide range of diseases in which they seem to be involved, together with the enormous 
amount of literature that is published on the subject, sometimes leads to the global 
consideration of oxygen radicals as deleterious agents. One of the most consistent 
sources of oxygen radicals among tissues is the mitochondrial respiratory chain, 
specially at the ubiquinone’ or NDAH’ site. There, a small proportion (around 1%) 
of the oxygen consumption is partially reduced to Of and H,O,. That this happens 
is unquestionably true. Nevertheless, it is frequently assumed that this represents 
some kind of evolutionary “inefficiency”. It is reasoned that no system can be 100% 
effective. Then, even though 99% of mitochondrial 0, consumption is tetravalently 
reduced to water, it is considered as unavoidable that a small amount of 0, be 
incompletely reduced to active oxygen species. Oxygen radical generation, according 
to that view, would be a representation of the incomplete “perfection” of living things. 

I think that this view can be unfounded. We can prove that oxygen radicals are 
formed in the cell, but we can not know at present if their generation represents an 
evolutionary “failure” or, on the contrary, a physiological trait that was even selected 
for during evolution. An important suggestion (not a proof) concerning the 
evolutionary significance of mitochondrial oxygen radical generation can be obtained 
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from the mechanism of oxygen reduction at cytochrome oxidase. There, a sequential 
two electron path has been suggested, together with the existence of three intermediate 
states, oxy, peroxy and fully oxidized.' Nevertheless, no reactive oxygen intermediates 
are liberated to the medium at cytochrome oxidase and all (100%) the oxygen is 
reduced to water. This shows that the development of a system that reduces oxygen 
to water in various electron steps without releasing reactive oxygen intermediates is 
not an impossible task for the evolutionary process. 

Thus, the possibility that the release of oxygen radicals at the mitochondria1 
respiratory chain is a controlled process cannot be discarded at present. The 
evolutionary significance of oxygen radicals could be one of serving useful 
purposes.".' ' Their implication in pathological states will occur in situations in 
which the level of cellular oxidative stress (the balance between prooxidant factors 
and antioxidants) gets out of control. This can happen due to an exaggerated oxygen 
radical production, a decrease of antioxidants, or an increase in the amounts of 
macromolecules specially susceptible to oxidative damage. But oxygen radicals would 
not be "essentially" deleterious. This view has been proposed previously 2 . '  as R. J. 
P. Williams has suggested: "If radicals had been so dangerous, surely during the 
process of evolution they would have been avoided; in fact they are used by all cells. 
The risks have always to be measured against the advantages in evolution, or 
elsewhcre".' Thus, controlled production of oxygen-derived radicals could be used 
for metabolic purposes, even though this approach has been, with some exceptions,'".' ' 
rarely referenced. 

POSSIBLE USEFUL ROLES O F  OXYGEN RADICALS 

What can be the nature of those purported useful purposes? There is no doubt that 
our knowledge about "benficial" effects of oxygen radicals is very limited. This can 
be related to the logically strong interest in the study of the causes of free radical 
related pathologies in humans. Nevertheless, some data are from time to time 
repeatedly appearing in the literature, suggesting useful roles for oxygen radicals. The 
following is a short summary of these findings. 

Modulation of important cellular second messengers such as cyclic G M P  has been 
reported to occur due to the effect of oxygen  radical^,'^ Of , I 5 . l 6  OH. , I 7 ,  H 2 0 2 , ' 8 - 2 0  
hyperoxia," or metabolism of H 2 0 2  by catalase22 upon guaylate cyclase activity. 
Organic radicals are thought to be involved in the synthesis of deoxyribonucleotides 
mediated by the enzyme ribonucleoside diphosphate r e d ~ c t a s e ~ ~ . ~ ~  and in the 
regulation of the endothelial-derived relaxing factor (EDRF).25 In this respect, i t  has 
been recently showed that not only endothelial cells, but also neurons can produce 
0; and nitric oxide (NO.) leading to peroxynitrite (ONOO-) generation.26-28 The 
production of 0; by the NADPH oxidase present in the cellular membrane and in 
the phagocytic vesicles of neutrophils, macrophages, monocytes and eosinophils is 
an important and well established part of the defensive systems of the A 
similar membrane-bound H 2 0 2  producing-NADPH oxidase, found in the membrane 
of rat adipocytes, can be involved in a proposed role of H ,02  as "second messenger" 
of i n s ~ l i n . ~ ~ - ~ ~  Production of 0; by membrane NADPH oxidases has been recently 
demonstrated also in B- lympho~ytes ,~~ - 4 0  fibroblasts?' - 4 3  or in human glomerular 
mesangial cells.44 Other chemical messengers whose synthesis has been related to 
organic hydroperoxides or H 2 0 2  are thyroxine,45 ~ 47 prostaglandins,48- and 
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leukotrienes.” It  has been even suggested that oxygen radicals are involved in 
fundamental and general processes such as development ad d i f f e r e n t i a t i ~ n . ~ ~ . ~ ~  If this 
is true, the relationship of cancer with oxidative could be due again to 
situations in which the normal effects of free radicals get out of control. Other 
important physiological processes which have been related to Of are: membrane 
p ~ t e n t i a l , ~ ~ - ~ ’  the effect of vitamin K ,  on synthesis of prothrombin and coagulation 
factors VII and IX,59 platelet metabolism of x e n o b i o t i ~ s , ~ ~ . ~ ~  or 
2-oxoglutarate-dependent hydr~xy la t ion .~~  All these are normal physiological 
processes important for the maintenance of homeostasis in different tissues and species. 
On the other hand, in addition to their involvement in many pathologies, free radical 
production and lipid peroxidation are normally and acutely stimulated physiologically 
during periods of high oxygen consumption, as it occurs in the muscle fiber during 
exercise65 -“ or in the brown adipose tissue during non-shivering therrn~genesis .~’-~~ 
In addition, more tissue or species-specific roles of free radicals have been also 
described in relation to: appearance of fertilization membrane in the sea-urchin egg 
in order to avoid p ~ l y s p e r m y , ~ ~ . ~ ~  the development of bioluminescence in invertebrate 
animals,75 the defense reaction of bombardier beetles against  intruder^,'^ the wound 
response of plant  tissue^,^' ~ 7 y  the synthesis of lignin in plants,” or the synthesis of 
ATP in the hydrogenosomes of parasitic protozoa.’ 

THE “OXYGEN RADICAL CYCLE” 

The “oxygen radical cycle” depicted in Figure 1 can help to remember the possibility 
that free radical production evolved for the development of useful purposes related 
to cellular metabolism. The cycle is completed with two well known enzymatic 
reactions, those of superoxide dismutase (SOD) and catalase (CAT). In both cases 
one or two of the products of the catalyzed reaction feeds back on the cycle. This is 
well known, but the organization of the drawing helps to stress this cyclic character. 
The 0, production by SOD and CAT can be of minor relevance under basal conditions 
in relation to that released from hemoglobin at tissue capillaries; but this cyclic 
character could partially avoid a decrease of tissue PO, levels in situations in which 
0, radical production is greatly increased (if the system would not produce O,, the 
0, radical burst followed by 0, radical scavenging could quickly lead to local 
hypoxia, thus limiting many cellular oxygen-dependent functions). Nevertheless, i t  
must be stressed that the balance between 0, consumption and production during 
full operation of the cycle (the 0;- production plus the SOD and CAT reactions) is 
not complete since the stoichiometry of the reactions shows that only 3 molecules of 
0, are produced for every 4 molecules of oxygen consumed in each turn of the cycle, 
the fourth 0, molecule being reduced to 2 molecules of water similarly to what 
occurs in the cytochrome oxidase reaction, but in this case without any coupled ATP 
production (see Figure 1 and its insert). 

The cycle intermediates finally come from the environment (diet or respiration), 
and are eliminated by peroxidases such as glutathione peroxidases (GPx), which can 
then be fully considered as oxygen radical scavenging enzymes. All the antioxidant 
enzymatic systems can be regarded as regulators of the levels of oxygen radicals 
which can have their own physiological functions in the tissues. Some possible 
consequences or predictions of the cycle would be: 1) an increase in SOD not 
accompanied by a high enough increase in CAT can result in high H,O, 
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66 G. BARJA 

ITHE OXYGEN RADICAL CYCLE I 

(Source) 

Figure 1 The oxygen radical cycle. Antioxidant enzymes regulate the levels of active oxygen species which 
can be involved in normal physiological processes when held at appropriate levels. SOD = superoxide 
dismutase; CAT= catalase: CPx =glutathione peroxidase; GSH and GSSG = reduced and oxidized 
glutathione; e -  =electrons. 

concentrations, since SOD does not in fact eliminate cycle intermediates and produces 
H,O,; this can be related to the negative effects of strong SOD supplementation 
reported in various model systems, since H,O, can produce oxidative damage through 
OH. formation in the presence of a reducing agent such as ferrous iron. 2) an excess 
of CAT would not be so negative, initially at least, since it simply produces basal 
0,. 3) a simultaneous and very strong increase of both SOD and CAT could expend 
metabolic energy, since it would reduce 0, to water, using electrons from diet-derived 
substrates, without leading to ATP production. 4) an increase in the intake of food 
could theoretically elevate the tissue levels of 0; and H,O,; if oxygen radicals are 
finally involved at the root of the aging process, this can be related to the fact that 
the only manipulation that unquestionably decreases aging rate is caloric restriction 
in the diet. 5) similarly, an increase in tissue oxygenation, or in oxygen consumption 
during exercise, can be the cause of the well known increase in oxidative stress trough 
an augmentation of cycle intermediates. All this is compatible with useful roles for 
oxy radicals if the concept of prooxidant-antioxidant balance, which is gaining 
acceptance nowadays, is held: if this balance is disrupted, excess concentrations of 
oxygen radicals results, leading to tissue damage. Finally, even if some of those 
predictions were wrong, I think that the study of possible useful roles of oxygen 
radicals merits further attention from the scientific community. A greater 
understanding of the causes and mechanisms of human pathologies is urgently needed. 
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But they would be perhaps highly clarified if we can manage to unveil previously 
unknown fundamental roles of free radicals in the tissues. 
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